

Methods for NOx Emission Reduction in BFB Combustion A CFD Study

Perttu Jukola & Marko Huttunen / VTT Technical Research of Finland Pauli Dernjatin & Jouko Heikkilä / Fortum

IFRF, Finnish-Swedish Flame Days, 17.-18.04.2013, Jyväskylä, Finland

General idea of air staging in BFB boilers

- Main air introduction levels
 - ▶1'ry air + FGR (from bed)
 - ≥2'ry
 - ≥3'ry
 - + additional air to zone
- Combustion zones
 - I. bed \rightarrow 2'ry
 - II. $2'ry \rightarrow 3'ry$
 - III. 3'ry \rightarrow furnace exit
 - Zones I & II operated with stoichiometric ratio (SR) < 1 and zone III with SR > 1 for NOx control

New air staging techniques for NOx emission reduction in BFB combustion

Alternative A

NOx control

- additional air to zone I
 - ☐ improved mixing of fuel and air
 - enhanced NOx reduction
- > zone l
 - □ reasonably high SR
- NOx reduction in zonesI & II

Alternative B

low furnace & bed T control

- no additional air to zone I
 - e.g. if high furnace volumetric loading
 - compromised NOx performance
- > zone I
 - ☐ low SR
- Main NOx reduction in zone II

 A or B chosen based on furnace design, dimensioning and typical mode of operation

SR = Stoichiometric Ratio

A BFB boiler CFD modelling study

- Furnace capacity
 - > 175 MW_{fuel}
 - ✓ 100 % MCR
- Fuel mixture
 - peat + biomass
 - base case (typical)
 - ✓ peat/ bio = 30/70
 - o energy basis
 - additional studies
 - ✓ peat 100 %
 - ✓ bio 100 %

- Main topic: NOx formation
 - effect of 2'ry air elevation
 - low furnace air distribution
- Other topics
 - burnout
 - ✓ indicator: CO at furnace exit
 - upper furnace corrosion and fouling tendency
 - ✓ indicator: furnace exit gas temperature (FEGT)

CFD modelling: Fuel properties

Fuel analysis	Peat	Biomass
Moisture [w-%]	54	52
Ultimate [w-%, dry]:		
С	55.3	51.2
Н	5.5	5.6
0	31.7	38.1
N	1.7	0.4
S + ash + others	5.8	4.7
Proximate [w-%, dry]:		
volatiles	68.0	80.0
char	26.2	15.3
FR (fuel ratio)	0.39	0.19
LHV [MJ/kg, dry]	21.5	18.1

BFB boiler CFD: NOx model validation

Validation case: 175 MW_{fuel}, peat/biomass = 30/70 (reference for further studies)

Zone III SR ≈ 1.2

Fuel mixture: peat/bio = 30/70

BFB boiler CFD: Effect of 2'ry air elevation (alternative B)

⇒ Alternative B: lower 2'ry position beneficial for NOx, CO and FEGT

Zone II SR < 1.0

Zone III SR ≈ 1.2

Fuel mixture: peat/bio = 30/70

BFB boiler CFD: Effect of 2'ry air elevation (alternative A)

⇒ Alternative A: higher 2'ry position beneficial for NOx but not necessarily for CO and FEGT. Let's choose elevation EL-2 for further investigations

BFB boiler CFD: Zone I air distribution (alternative A)

⇒ Simultaneous decrease in FEGT, CO (except for peat) and NOx when "optimizing" zone I SR

BFB boiler CFD: Improving mixing (2'ry and 3'ry)

⇒ No drawback in NOx, no change in FEGT (avg.), remarkable decrease in peak T and CO

Summary

- Fortum and VTT have developed new methods aiming for reduction of NOx emissions from BFB boilers by air staging
 - ➤ Lower furnace <u>SR and 2'ry air system are optimized</u> and designed case by case based on the furnace design and normal operation characteristics
- NOx emission, burnout and upper furnace temperature (fouling) can be <u>controlled simultaneously</u> with a proper air system design and optimized air distribution
 - ➤ Where necessary, specific solutions are available for low furnace slagging and corrosion problems as well

Contact information

- Perttu Jukola, VTT Technical Research Centre of Finland, perttu.jukola@vtt.fi, +358 20 722 5098
- Marko Huttunen, VTT Technical Research Centre of Finland, marko.huttunen@vtt.fi, +358 20 722 5053
- Pauli Dernjatin, Fortum, Power Division, Power Solutions, pauli.dernjatin@fortum.com, +358 50 453 2025
- Jouko Heikkilä, Fortum, Power Division, Power Solutions, jouko.heikkila@fortum.com, +358 50 453 4514

