The Extended Discrete Element Method (XDEM) for Multi-Physics Applications

Finnish-Swedish Flame Days 2013
Jyväskylä
April 17-18, 2013

B. Peters
Content

• Introduction
• Features and Benefits
• Thermal Conversion of Packed Beds
• Conclusions
Content

• Introduction
• Features and Benefits
• Thermal Conversion of Packed Beds
• Conclusions
Extended Discrete Element Method (XDEM):

- based on the classical Discrete Element Method (DEM) to describe motion of granular materials (discrete phase)
- extended by
 - thermodynamics for particles
 - an interface to Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA)
Content

• Introduction
• Features and Benefits
• Thermal Conversion of Packed Beds
• Conclusions
Benefits

• Appropriate solution strategy for discrete and continuous phase
• High resolution of both discrete and continuous phase
• No empirical correlations
• No expensive experiments, sometimes even not feasible
• Retains individual inputs
• Common post-processing preferred, although individual post-processing feasible

Combination of expert tools for maximum synergy
Applications

- Storage and transport of granular material
- Mining and its machinery
- Agriculture and its machinery
- Processing industry: Fluidised beds, fixed and moving bed reactors for
 - Drying
 - Thermal conversion (combustion, gasification)
 - Processing of raw materials
- Pharmaceutical industry e.g. coating, drug production
- Food industry (transport, coating, processing)
Content

• Introduction
• Features and Benefits
• Thermal Conversion of Packed Beds
• Conclusions
Spatial and Temporal Temperature Distribution
Validation for a Single Particle

![Graph showing residual moisture mass fraction over time for measurements and predictions at 66% and 33% moisture content.](image-url)
Validation for a Packed Bed

![Graph showing moisture loss over time with predictions and experiments at different temperatures (T = 423 K and T = 408 K).]
Distribution of Porosity and Velocity
Distribution of Temperature and Humidity

Finnish-Swedish Flame Days 2013
Content

• Introduction
• Features and Benefits
• Thermal Conversion of Packed Beds
• Conclusions
Conclusions

- XDEM as a novel and advanced simulation framework for multi-physics applications
- Efficient and flexible coupling to CFD/FEM solvers
 - Mechanical interaction
 - Heat/mass transfer
 - Drag forces
- High resolution of discrete and continuous phases
- No further modelling or assumptions
Thank you very much for your attention

Visit us at:

www.xdem.de